0%

live_transCongestionControl

google 在webrtc上的拥塞控制rfc:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
[Search] [txt|xml|pdf|bibtex] [Tracker] [Email] [Diff1] [Diff2] [Nits]

Versions: (draft-alvestrand-rtcweb-congestion) IPR declarations
00 01 02 03 draft-ietf-rmcat-gcc
Network Working Group S. Holmer
Internet-Draft H. Lundin
Intended status: Informational Google
Expires: December 31, 2015 G. Carlucci
L. De Cicco
S. Mascolo
Politecnico di Bari
June 29, 2015


A Google Congestion Control Algorithm for Real-Time Communication
draft-alvestrand-rmcat-congestion-03

Abstract

This document describes two methods of congestion control when using
real-time communications on the World Wide Web (RTCWEB); one delay-
based and one loss-based.
这篇文档描述两种拥塞控制的方式,当在rtcweb上使用时;一个基于延迟,一个基于丢包;

It is published as an input document to the RMCAT working group on
congestion control for media streams. The mailing list of that
working group is rmcat@ietf.org.
它被作为一个内部文档发表到RMCAT工作组,为流媒体的拥塞控制。邮箱是rmcat@ietf.org

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.本互联网草案完全符合 BCP 78 和 BCP 79 的规定。

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts 是 Internet Engineering 的工作文件
工作组 (IETF)。请注意,其他组也可能分发
工作文件作为互联网草案。当前互联网的列表-
草稿位于 http://datatracker.ietf.org/drafts/current/。


Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

互联网草案是有效期最长为六个月的草案文件
并且可能随时被其他文档更新、替换或废弃
时间。使用 Internet-Drafts 作为参考是不合适的
材料或引用它们而不是“正在进行的工作”。

This Internet-Draft will expire on December 31, 2015.
这个互联网草案将于 20151231 日到期。





Holmer, et al. Expires December 31, 2015 [Page 1]


Internet-Draft Congestion Control for RTCWEB June 2015


Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Mathematical notation conventions . . . . . . . . . . . . 3
2. System model . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Feedback and extensions . . . . . . . . . . . . . . . . . . . 5
4. Delay-based control . . . . . . . . . . . . . . . . . . . . . 5
4.1. Arrival-time model . . . . . . . . . . . . . . . . . . . 5
4.2. Arrival-time filter . . . . . . . . . . . . . . . . . . . 7
4.3. Over-use detector . . . . . . . . . . . . . . . . . . . . 9
4.4. Rate control . . . . . . . . . . . . . . . . . . . . . . 10
4.5. Parameters settings . . . . . . . . . . . . . . . . . . . 13
5. Loss-based control . . . . . . . . . . . . . . . . . . . . . 13
6. Interoperability Considerations . . . . . . . . . . . . . . . 15
7. Implementation Experience . . . . . . . . . . . . . . . . . . 15
8. Further Work . . . . . . . . . . . . . . . . . . . . . . . . 15
9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 16
10. Security Considerations . . . . . . . . . . . . . . . . . . . 16
11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 16
12. References . . . . . . . . . . . . . . . . . . . . . . . . . 16
12.1. Normative References . . . . . . . . . . . . . . . . . . 16
12.2. Informative References . . . . . . . . . . . . . . . . . 17
Appendix A. Change log . . . . . . . . . . . . . . . . . . . . . 17
A.1. Version -00 to -01 . . . . . . . . . . . . . . . . . . . 17
A.2. Version -01 to -02 . . . . . . . . . . . . . . . . . . . 17
A.3. Version -02 to -03 . . . . . . . . . . . . . . . . . . . 18
A.4. rtcweb-03 to rmcat-00 . . . . . . . . . . . . . . . . . . 18
A.5. rmcat -00 to -01 . . . . . . . . . . . . . . . . . . . . 18
A.6. rmcat -01 to -02 . . . . . . . . . . . . . . . . . . . . 18
A.7. rmcat -02 to -03 . . . . . . . . . . . . . . . . . . . . 18
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 19





Holmer, et al. Expires December 31, 2015 [Page 2]


Internet-Draft Congestion Control for RTCWEB June 2015


1. Introduction

Congestion control is a requirement for all applications sharing the
Internet resources [RFC2914].
拥塞控制时所有应用程序共享互联网资源的要求,见RFC2914

Congestion control for real-time media is challenging for a number of
reasons: 在实时媒体上的拥塞控制是具有挑战性的,因为如下原因:

o The media is usually encoded in forms that cannot be quickly
changed to accommodate varying bandwidth, and bandwidth
requirements can often be changed only in discrete, rather large
steps
媒体通常是被编码为格式以致于不能很快的调整来适应多变的带宽,
并且带宽要求经常只能进行离散的改变而不是大步调整。

o The participants may have certain specific wishes on how to
respond - which may not be reducing the bandwidth required by the
flow on which congestion is discovered
参与者可能会对如何响应有具体的期望,这可能不会减少发现拥塞的流所需的带宽

o The encodings are usually sensitive to packet loss, while the
real-time requirement precludes the repair of packet loss by
retransmission
编码通常对丢包敏感,实时传输要求尽量避免出现重传修复丢包的情况。

This memo describes two congestion control algorithms that together
are able to provide good performance and reasonable bandwidth sharing
with other video flows using the same congestion control and with TCP
flows that share the same links.

本备忘录描述了两种拥塞控制算法,它们一起能够提供良好的性能和与使用相同拥塞控制的其他视频流以及
共享相同链路的 TCP 流的合理带宽共享。

The signaling used consists of experimental RTP header extensions and
RTCP messages RFC 3550 [RFC3550] as defined in [abs-send-time],
[I-D.alvestrand-rmcat-remb] and
[I-D.holmer-rmcat-transport-wide-cc-extensions].使用的信令包括实验性 RTP 报头扩展RTCP 信息。。。。

1.1. Mathematical notation conventions数学符号约定

The mathematics of this document have been transcribed from a more
formula-friendly format.

The following notational conventions are used:

X_bar The variable X, where X is a vector - conventionally marked by
a bar on top of the variable name.
X_bar 变量 X,其中 X 是向量 - 通常由
变量名称顶部的栏。

X_hat An estimate of the true value of variable X - conventionally
marked by a circumflex accent on top of the variable name.
X_hat 对变量 X 真实值的估计 - 传统上
由变量名称顶部的抑扬符号标记。^


X(i) The "i"th value of vector X - conventionally marked by a
subscript i.X(i) 向量 X 的第 i 个值 - 通常由 a 标记
下标 i.

[x y z] A row vector consisting of elements x, y and z.[x y z] 由元素 x、y 和 z 组成的行向量。



Holmer, et al. Expires December 31, 2015 [Page 3]


Internet-Draft Congestion Control for RTCWEB June 2015


X_bar^T The transpose of vector X_bar.向量 X_bar 的转置。

E{X} The expected value of the stochastic variable X 随机变量 X 的期望值

2. System model

The following elements are in the system:

o RTP packet - an RTP packet containing media data.

o Packet group - a set of RTP packets transmitted from the sender
uniquely identified by the group departure and group arrival time
(absolute send time) [abs-send-time]. These could be video
packets, audio packets, or a mix of audio and video packets.
数据包组 - 从发送方传输的一组 ​​RTP 数据包
由团体出发和团体到达时间唯一标识 (absolute send time) [abs-send-time].
可能是视频或音频包或者是两者的混合
o Incoming media stream - a stream of frames consisting of RTP
packets.传入媒体流: 即一条由rtp包组成帧的流;

o RTP sender - sends the RTP stream over the network to the RTP
receiver. It generates the RTP timestamp and the abs-send-time
header extension
RTP发送者,发送RTP流通过网络到RTP接收者。它生成RTP时间戳和绝对发送时间头部扩展、

o RTP receiver - receives the RTP stream, marks the time of arrival.
RTP接收者: 接收RTP流并标记到达时间。

o RTCP sender at RTP receiver - sends receiver reports, REMB
messages and transport-wide RTCP feedback messages.
RTCP发送方在RTP接收方; 发送接收者报告,REMB 信息和传输范围的 RTCP 反馈消息。

o RTCP receiver at RTP sender - receives receiver reports and REMB
messages and transport-wide RTCP feedback messages, reports these
to the sender side controller.
RTP 发送方的 RTCP 接收方-接收接收方报告和REMB信息和传输范围的RTCP反馈信息,报告这些到发送方控制器
o RTCP receiver at RTP receiver, receives sender reports from the
sender.
RTCP 接收器位于 RTP 接收器,从发送器接收发送器报告。
o Loss-based controller - takes loss rate measurement, round trip
time measurement and REMB messages, and computes a target sending
bitrate.
基于丢包的控制器 - 进行丢包率测量、往返时间测量和 REMB 消息,并计算目标发送比特率。
o Delay-based controller - takes the packet arrival info, either at
the RTP receiver, or from the feedback received by the RTP sender,
and computes a maximum bitrate which it passes to the loss-based
controller.
基于延迟的控制器 - 获取数据包到达信息,或者在
RTP 接收器,或从 RTP 发送器接收到的反馈,并计算它传递给基于丢包的控制器的最大比特率。
Together, loss-based controller and delay-based controller implement
the congestion control algorithm.
基于丢包的控制器和基于延迟的控制器一起实现拥塞控制算法。






Holmer, et al. Expires December 31, 2015 [Page 4]


Internet-Draft Congestion Control for RTCWEB June 2015


3. Feedback and extensions

There are two ways to implement the proposed algorithm. One where
both the controllers are running at the send-side, and one where the
delay-based controller runs on the receive-side and the loss-based
controller runs on the send-side.
有两种方法可以实现所提出的算法。 一种是两个控制器都在发送端运行,另一种是基于延迟的控制器在接收端运行,基于丢包的控制器在发送端运行。
The first version can be realized by using a per-packet feedback
protocol as described in
[I-D.holmer-rmcat-transport-wide-cc-extensions]. Here, the RTP
receiver will record the arrival time and the transport-wide sequence
number of each received packet, which will be sent back to the sender
periodically using the transport-wide feedback message. The
RECOMMENDED feedback interval is once per received video frame or at
least once every 30 ms if audio-only or multi-stream. If the
feedback overhead needs to be limited this interval can be increased
to 100 ms.
第一个版本可以通过使用 [I-D.holmer-rmcat-transport-wide-cc-extensions] 中描述的每包反馈协议来实现。
在这里,RTP 接收器将记录每个接收到的数据包的到达时间和传输范围的seqnum,这些信息将使用传输范围的反馈消息定期发送回发送方。
推荐的反馈间隔是每接收到一个视频帧一次,如果是纯音频或多流,则至少每 30 毫秒一次。 如果需要限制反馈开销,该间隔可以增加到 100 毫秒。
The sender will map the received {sequence number, arrival time}
pairs to the send-time of each packet covered by the feedback report,
and feed those timestamps to the delay-based controller. It will
also compute a loss ratio based on the sequence numbers in the
feedback message.
发送方将接收到的{序列号,到达时间}对映射到反馈报告涵盖的每个数据包的发送时间,并将这些时间戳提供给基于延迟的控制器。 它还将根据反馈消息中的序列号计算丢失率。


The second version can be realized by having a delay-based controller
at the receive-side, monitoring and processing the arrival time and
size of incoming packets. The sender SHOULD use the abs-send-time
RTP header extension [abs-send-time] to enable the receiver to
compute the inter-group delay variation. The output from the delay-
based controller will be a bitrate, which will be sent back to the
sender using the REMB feedback message [I-D.alvestrand-rmcat-remb].
The packet loss ratio is sent back via RTCP receiver reports. At the
sender the bitrate in the REMB message and the fraction of packets
lost are fed into the loss-based controller, which outputs a final
target bitrate. It is RECOMMENDED to send the REMB message as soon
as congestion is detected, and otherwise at least once every second.
第二个版本可以通过在接收端有一个基于延迟的控制器来实现,监控和处理传入数据包的到达时间和大小。
发送方应该使用 abs-send-time RTP 头扩展 [abs-send-time] 使接收方能够计算组间延迟变化。 基于延迟的控制器的输出将是一个比特率,它将使用 REMB 反馈消息 [I-D.alvestrand-rmcat-remb] 发送回发送方。
丢包率通过 RTCP 接收器报告发回。 在发送方,REMB 消息中的比特率和丢失的数据包部分被送入基于丢失的控制器,后者输出最终目标比特率。 建议在检测到拥塞时立即发送 REMB 消息,否则至少每秒发送一次。

不管怎样最终都是发送方根据信息得到最后的发送bitrate,并调整速率进行拥塞控制;


4. Delay-based control

The delay-based control algorithm can be further decomposed into
three parts: an arrival-time filter, an over-use detector, and a rate
controller.基于延迟的控制算法可以进一步分解为
三部分:到达时间滤波器、过度使用检测器和速率
控制器。

4.1. Arrival-time model

This section describes an adaptive filter that continuously updates
estimates of network parameters based on the timing of the received
packets.



Holmer, et al. Expires December 31, 2015 [Page 5]


Internet-Draft Congestion Control for RTCWEB June 2015


We define the inter-arrival time, t(i) - t(i-1), as the difference in
arrival time of two packets or two groups of packets.
Correspondingly, the inter-departure time, T(i) - T(i-1), is defined
as the difference in departure-time of two packets or two groups of
packets. Finally, the inter-group delay variation, d(i), is defined
as the difference between the inter-arrival time and the inter-
departure time. Or interpreted differently, as the difference
between the delay of group i and group i-1.
我们将到达间隔时间 t(i) - t(i-1) 定义为两个数据包或两组数据包的到达时间差。
相应地,出发间隔时间T(i)-T(i-1)被定义为两个数据包或两组数据包的出发时间差。 最后,组间延迟变化 d(i) 被定义为到达间隔时间和出发间隔时间之间的差值。
或者不同的解释,作为第 i 组和第 i-1 组延迟之间的差异。
d(i) = t(i) - t(i-1) - (T(i) - T(i-1))


At the receiving side we are observing groups of incoming packets,
where a group of packets is defined as follows:

在接收端,我们观察传入的数据包组,
其中一组数据包定义如下:
o A sequence of packets which are sent within a burst_time interval
constitute a group. RECOMMENDED value for burst_time is 5 ms.
在 burst_time 间隔内发送的数据包序列
组成一个群体。 Burst_time 的推荐值为 5 ms。
o In addition, any packet which has an inter-arrival time less than
burst_time and an inter-group delay variation d(i) less than 0 is
also considered being part of the current group of packets. The
reasoning behind including these packets in the group is to better
handle delay transients, caused by packets being queued up for
reasons unrelated to congestion. As an example this has been
observed to happen on many Wi-Fi and wireless networks.
此外,具有小于burst_time的到达间隔时间和小于0的组间延迟变化d(i)的任何分组也被认为是当前分组分组的一部分。
将这些数据包包含在组中的原因是为了更好地处理延迟瞬变,这是由于数据包因与拥塞无关的原因排队而引起的。 例如,在许多 Wi-Fi 和无线网络上都观察到了这种情况。

An inter-departure time is computed between consecutive groups as
T(i) - T(i-1), where T(i) is the departure timestamp of the last
packet in the current packet group being processed. Any packets
received out of order are ignored by the arrival-time model.
连续组之间的出发间隔时间计算为 T(i) - T(i-1),其中 T(i) 是当前正在处理的分组组中最后一个分组的出发时间戳。
任何无序接收的数据包都会被到达时间模型忽略。
Each group is assigned a receive time t(i), which corresponds to the
time at which the last packet of the group was received. A group is
delayed relative to its predecessor if t(i) - t(i-1) > T(i) - T(i-1),
i.e., if the inter-arrival time is larger than the inter-departure
time.
每个组被分配一个接收时间 t(i),它对应于
收到组的最后一个数据包的时间。

如果 t(i) - t(i-1)> T(i) - T(i-1),则一组是相对于其前任延迟,
即,如果到达间隔时间大于出发间隔时间
时间
Since the time ts to send a group of packets of size L over a path
with a capacity of C is roughly
由于在容量为 C 的路径上发送一组大小为 L 的数据包的时间 ts 大致为
ts = L/C

we can model the inter-group delay variation as:

我们可以将组间延迟变化建模为:






Holmer, et al. Expires December 31, 2015 [Page 6]


Internet-Draft Congestion Control for RTCWEB June 2015


d(i) = L(i)/C(i) - L(i-1)/C(i-1) + w(i) =

L(i)-L(i-1)
= -------------- + w(i) = dL(i)/C(i) + w(i)
C(i)


Here, w(i) is a sample from a stochastic process W, which is a
function of the capacity C(i), the current cross traffic, and the
current sent bitrate. C is modeled as being constant as we expect it
to vary more slowly than other parameters of this model. We model W
as a white Gaussian process. If we are over-using the channel we
expect the mean of w(i) to increase, and if a queue on the network
path is being emptied, the mean of w(i) will decrease; otherwise the
mean of w(i) will be zero.
这里,w(i) 是来自随机过程 W 的样本,它是容量 C(i)、当前交叉流量和当前发送比特率的函数。
C 被建模为常数,因为我们预计它比该模型的其他参数变化得更慢。 我们将 W 建模为白高斯过程。
如果我们过度使用通道,我们预计 w(i) 的均值会增加,如果网络路径上的队列被清空,则 w(i) 的均值会减少; 否则 w(i) 的平均值将为零。
Breaking out the mean, m(i), from w(i) to make the process zero mean,
we get

Equation 1

d(i) = dL(i)/C(i) + m(i) + v(i)//这里的v(i)属于观测噪声,可以看看://https://www.cnblogs.com/ishen/p/15000909.html#!comments

This is our fundamental model, where we take into account that a
large group of packets need more time to traverse the link than a
small group, thus arriving with higher relative delay. The noise
term represents network jitter and other delay effects not captured
by the model.
从 w(i) 中取出均值 m(i) 使过程均值为零,
我们得到

等式 1

d(i) = dL(i)/C(i) + m(i) + v(i)

这是我们的基本模型,我们考虑到一大群数据包比一小群数据包需要更多的时间来遍历链路,因此到达时具有更高的相对延迟。
噪声项表示模型未捕获的网络抖动和其他延迟效应。
4.2. Arrival-time filter

The parameters d(i) and dL(i) are readily available for each group of
packets, i > 1, and we want to estimate C(i) and m(i) and use those
estimates to detect whether or not the bottleneck link is over-used.
These parameters can be estimated by any adaptive filter - we are
using the Kalman filter.
参数 d(i) 和 dL(i) 可用于每组
数据包,i>1,我们想估计 C(i) 和 m(i) 并使用它们
估计以检测瓶颈链路是否被过度使用。
这些参数可以通过任何自适应滤波器来估计——我们是
使用卡尔曼滤波器。
Let

theta_bar(i) = [1/C(i) m(i)]^T

and call it the state at time i. We model the state evolution from
time i to time i+1 as
并将其称为时间 i 的状态。我们对状态演化进行建模
时间 i 到时间 i+1
theta_bar(i+1) = theta_bar(i) + u_bar(i)

where u_bar(i) is the state noise that we model as a stationary
process with Gaussian statistic with zero mean and covariance
其中 u_bar(i) 是我们建模为平稳的状态噪声
处理具有零均值和协方差的高斯统计量


Holmer, et al. Expires December 31, 2015 [Page 7]


Internet-Draft Congestion Control for RTCWEB June 2015


Q(i) = E{u_bar(i) * u_bar(i)^T}

Q(i) is RECOMMENDED as a diagonal matrix with main diagonal elements
as:

diag(Q(i)) = [10^-13 10^-3]^T

Given equation 1 we get

d(i) = h_bar(i)^T * theta_bar(i) + v(i)

h_bar(i) = [dL(i) 1]^T

where v(i) is zero mean white Gaussian measurement noise with
variance var_v = sigma(v,i)^2

The Kalman filter recursively updates our estimate

theta_hat(i) = [1/C_hat(i) m_hat(i)]^T

as

z(i) = d(i) - h_bar(i)^T * theta_hat(i-1)

theta_hat(i) = theta_hat(i-1) + z(i) * k_bar(i)

( E(i-1) + Q(i) ) * h_bar(i)
k_bar(i) = ------------------------------------------------------
var_v_hat(i) + h_bar(i)^T * (E(i-1) + Q(i)) * h_bar(i)

E(i) = (I - k_bar(i) * h_bar(i)^T) * (E(i-1) + Q(i))

where I is the 2-by-2 identity matrix.

The variance var_v(i) = sigma_v(i)^2 is estimated using an
exponential averaging filter, modified for variable sampling rate

var_v_hat(i) = max(beta * var_v_hat(i-1) + (1-beta) * z(i)^2, 1)

beta = (1-chi)^(30/(1000 * f_max))

where f_max = max {1/(T(j) - T(j-1))} for j in i-K+1,...,i is the
highest rate at which the last K packet groups have been received and
chi is a filter coefficient typically chosen as a number in the
interval [0.1, 0.001]. Since our assumption that v(i) should be zero
mean WGN is less accurate in some cases, we have introduced an
additional outlier filter around the updates of var_v_hat. If z(i) >
3*sqrt(var_v_hat) the filter is updated with 3*sqrt(var_v_hat) rather



Holmer, et al. Expires December 31, 2015 [Page 8]


Internet-Draft Congestion Control for RTCWEB June 2015


than z(i). For instance v(i) will not be white in situations where
packets are sent at a higher rate than the channel capacity, in which
case they will be queued behind each other.

4.3. Over-use detector

The offset estimate m(i), obtained as the output of the arrival-time
filter, is compared with a threshold gamma_1(i). An estimate above
the threshold is considered as an indication of over-use. Such an
indication is not enough for the detector to signal over-use to the
rate control subsystem. A definitive over-use will be signaled only
if over-use has been detected for at least gamma_2 milliseconds.
However, if m(i) < m(i-1), over-use will not be signaled even if all
the above conditions are met. Similarly, the opposite state, under-
use, is detected when m(i) < -gamma_1(i). If neither over-use nor
under-use is detected, the detector will be in the normal state.
作为到达时间滤波器的输出获得的偏移估计 m(i) 与阈值 gamma_1(i) 进行比较。 高于阈值的估计被视为过度使用的迹象。
这种指示不足以使检测器向速率控制子系统发出过度使用信号。 只有在至少 gamma_2 毫秒内检测到过度使用时,才会发出明确的过度使用信号。
但是,如果 m(i) < m(i-1),即使满足上述所有条件,也不会发出过度使用信号。 类似地,当 m(i) < -gamma_1(i) 时,检测到相反的状态,即使用不足。
如果没有检测到过度使用和使用不足,则探测器将处于正常状态。
The threshold gamma_1 has a remarkable impact on the overall dynamics
and performance of the algorithm. In particular, it has been shown
that using a static threshold gamma_1, a flow controlled by the
proposed algorithm can be starved by a concurrent TCP flow [Pv13].
This starvation can be avoided by increasing the threshold gamma_1 to
a sufficiently large value.
阈值 gamma_1 对算法的整体动态和性能有显着影响。 特别是,已经表明,使用静态阈值 gamma_1,由所提出的算法控制的流可能会被并发 TCP 流 [Pv13] 饿死。
可以通过将阈值 gamma_1 增加到足够大的值来避免这种饥饿。
The reason is that, by using a larger value of gamma_1, a larger
queuing delay can be tolerated, whereas with a small gamma_1, the
over-use detector quickly reacts to a small increase in the offset
estimate m(i) by generating an over-use signal that reduces the
delay-based estimate of the available bandwidth A_hat (see
Section 4.4). Thus, it is necessary to dynamically tune the
threshold gamma_1 to get good performance in the most common
scenarios, such as when competing with loss-based flows.
原因是,通过使用较大的 gamma_1 值,可以容忍较大的排队延迟,而对于较小的 gamma_1,
过度使用检测器通过生成过度使用快速响应偏移估计 m(i) 的小幅增加 - 使用减少可用带宽 A_hat 的基于延迟的估计的信号(参见第 4.4 节)。
因此,有必要动态调整阈值 gamma_1 以在最常见的场景中获得良好的性能,例如与基于损失的流竞争时。
For this reason, we propose to vary the threshold gamma_1(i)
according to the following dynamic equation:
出于这个原因,我们建议改变阈值 gamma_1(i)
根据以下动态方程:
gamma_1(i) = gamma_1(i-1) + (t(i)-t(i-1)) * K(i) * (|m(i)|-gamma_1(i-1))

with K(i)=K_d if |m(i)| < gamma_1(i-1) or K(i)=K_u otherwise. The
rationale is to increase gamma_1(i) when m(i) is outside of the range
[-gamma_1(i-1),gamma_1(i-1)], whereas, when the offset estimate m(i)
falls back into the range, gamma_1 is decreased. In this way when
m(i) increases, for instance due to a TCP flow entering the same
bottleneck, gamma_1(i) increases and avoids the uncontrolled
generation of over-use signals which may lead to starvation of the
flow controlled by the proposed algorithm [Pv13]. Moreover,
gamma_1(i) SHOULD NOT be updated if this condition holds:
K(i)=K_d 如果 |m(i)| < gamma_1(i-1) 否则 K(i)=K_u
基本原理是当 m(i) 超出范围 [-gamma_1(i-1),gamma_1(i-1)] 时增加 gamma_1(i),而当偏移估计值 m(i) 回落到 范围内,gamma_1 减小。
通过这种方式,当 m(i) 增加时,例如由于 TCP 流进入同一瓶颈,gamma_1(i) 会增加并避免过度使用信号的不受控制的生成,
这可能导致所提出的算法控制的流饥饿 [Pv13]。
此外,如果此条件成立,则不应更新 gamma_1(i)



Holmer, et al. Expires December 31, 2015 [Page 9]


Internet-Draft Congestion Control for RTCWEB June 2015


|m(i)| - gamma_1(i) > 15

It is also RECOMMENDED to clamp gamma_1(i) to the range [6, 600],
since a too small gamma_1(i) can cause the detector to become overly
sensitive.
还建议将 gamma_1(i) 限制在 [6, 600] 范围内,因为太小 gamma_1(i) 会导致检测器变得过于敏感。
On the other hand, when m(i) falls back into the range
[-gamma_1(i-1),gamma_1(i-1)] the threshold gamma_1(i) is decreased so
that a lower queuing delay can be achieved.
另一方面,当 m(i) 回落到范围 [-gamma_1(i-1),gamma_1(i-1)] 时,阈值 gamma_1(i) 会降低,从而可以实现较低的排队延迟。
It is RECOMMENDED to choose K_u > K_d so that the rate at which
gamma_1 is increased is higher than the rate at which it is
decreased. With this setting it is possible to increase the
threshold in the case of a concurrent TCP flow and prevent starvation
as well as enforcing intra-protocol fairness. RECOMMENDED values for
gamma_1(0), gamma_2, K_u and K_d are respectively 12.5 ms, 10 ms,
0.01 and 0.00018.
建议选择 K_u > K_d,以便 gamma_1 增加的速率高于其减少的速率。 通过此设置,可以在并发 TCP 流的情况下增加阈值并防止饥饿以及强制执行协议内公平性。
gamma_1(0)、gamma_2K_uK_d 的推荐值分别为 12.5 ms、10 ms、0.01 和 0.00018。



4.4. Rate control

The rate control is split in two parts, one controlling the bandwidth
estimate based on delay, and one controlling the bandwidth estimate
based on loss. Both are designed to increase the estimate of the
available bandwidth A_hat as long as there is no detected congestion
and to ensure that we will eventually match the available bandwidth
of the channel and detect an over-use.
速率控制分为两部分,一部分控制基于延迟的带宽估计,另一部分控制基于损耗的带宽估计。
只要没有检测到拥塞,两者都旨在增加对可用带宽 A_hat 的估计,并确保我们最终将匹配信道的可用带宽并检测过度使用。
As soon as over-use has been detected, the available bandwidth
estimated by the delay-based controller is decreased. In this way we
get a recursive and adaptive estimate of the available bandwidth.
一旦检测到过度使用,
由基于延迟的控制器估计的可用带宽减少。这样我们
获得可用带宽的递归和自适应估计。
In this document we make the assumption that the rate control
subsystem is executed periodically and that this period is constant.
在本文档中,我们假设速率控制
子系统定期执行,并且这个周期是恒定的。
The rate control subsystem has 3 states: Increase, Decrease and Hold.
"Increase" is the state when no congestion is detected; "Decrease" is
the state where congestion is detected, and "Hold" is a state that
waits until built-up queues have drained before going to "increase"
state.
速率控制子系统有 3 种状态:增加、减少和保持。
“增加”是没有检测到拥塞时的状态; “减少”是
检测到拥塞的状态,“保持”是一种状态
在“增加”之前等待已建立的队列耗尽
状态。
The state transitions (with blank fields meaning "remain in state")
are:


状态转换(空白字段表示“保持状态”)
是:






Holmer, et al. Expires December 31, 2015 [Page 10]


Internet-Draft Congestion Control for RTCWEB June 2015


+----+--------+-----------+------------+--------+
| \ State | Hold | Increase |Decrease|
| \ | | | |
| Signal\ | | | |
+--------+----+-----------+------------+--------+
| Over-use | Decrease | Decrease | |
+-------------+-----------+------------+--------+
| Normal | Increase | | Hold |
+-------------+-----------+------------+--------+
| Under-use | | Hold | Hold |
+-------------+-----------+------------+--------+

The subsystem starts in the increase state, where it will stay until
over-use or under-use has been detected by the detector subsystem.
On every update the delay-based estimate of the available bandwidth
is increased, either multiplicatively or additively, depending on its
current state.
子系统以增加状态开始,它将一直保持到
检测器子系统检测到过度使用或使用不足。
在每次更新时,可用带宽的基于延迟的估计
增加,乘法或加法,取决于它的
当前状态。
The system does a multiplicative increase if the current bandwidth
estimate appears to be far from convergence, while it does an
additive increase if it appears to be closer to convergence. We
assume that we are close to convergence if the currently incoming
bitrate, R_hat(i), is close to an average of the incoming bitrates at
the time when we previously have been in the Decrease state. "Close"
is defined as three standard deviations around this average. It is
RECOMMENDED to measure this average and standard deviation with an
exponential moving average with the smoothing factor 0.95, as it is
expected that this average covers multiple occasions at which we are
in the Decrease state. Whenever valid estimates of these statistics
are not available, we assume that we have not yet come close to
convergence and therefore remain in the multiplicative increase
state.
如果当前带宽估计看起来离收敛很远,则系统进行乘法增加,而如果看起来更接近收敛,则系统进行加法增加。
如果当前传入的比特率 R_hat(i) 接近我们之前处于降低状态时的传入比特率的平均值,我们假设我们接近收敛。
Close” 定义为围绕该平均值的三个标准偏差。 建议使用平滑因子为 0.95 的指数移动平均来测量此平均值和标准偏差,因为预计此平均值涵盖我们处于减少状态的多个场合。
当这些统计数据的有效估计不可用时,我们假设我们还没有接近收敛,因此仍处于乘法增加状态。
If R_hat(i) increases above three standard deviations of the average
max bitrate, we assume that the current congestion level has changed,
at which point we reset the average max bitrate and go back to the
multiplicative increase state.
如果 R_hat(i) 增加到平均最大比特率的三个标准偏差以上,我们假设当前的拥塞程度已经改变,
此时我们重置平均最大比特率并返回
乘法递增状态。
R_hat(i) is the incoming bitrate measured by the delay-based
controller over a T seconds window:
R_hat(i) 是基于延迟的控制器在 T 秒窗口内测量的传入比特率:
R_hat(i) = 1/T * sum(L(j)) for j from 1 to N(i)

N(i) is the number of packets received the past T seconds and L(j) is
the payload size of packet j. A window between 0.5 and 1 second is
RECOMMENDED.
N(i) 是过去 T 秒收到的数据包数量,L(j)
数据包 j 的有效载荷大小。 0.5 到 1 秒之间的窗口是
受到推崇的。




Holmer, et al. Expires December 31, 2015 [Page 11]


Internet-Draft Congestion Control for RTCWEB June 2015


During multiplicative increase, the estimate is increased by at most
8% per second.

在乘法增加期间,估计最多增加
每秒 8%。
eta = 1.08^min(time_since_last_update_ms / 1000, 1.0)
A_hat(i) = eta * A_hat(i-1)

During the additive increase the estimate is increased with at most
half a packet per response_time interval. The response_time interval
is estimated as the round-trip time plus 100 ms as an estimate of
over-use estimator and detector reaction time.
在加法增加期间,每个 response_time 间隔最多增加半个数据包的估计值。 response_time 间隔估计为往返时间加上 100 ms 作为过度使用估计器和检测器反应时间的估计。
response_time_ms = 100 + rtt_ms
beta = 0.5 * min(time_since_last_update_ms / response_time_ms, 1.0)
A_hat(i) = A_hat(i-1) + max(1000, beta * expected_packet_size_bits)

expected_packet_size_bits is used to get a slightly slower slope for
the additive increase at lower bitrates. It can for instance be
computed from the current bitrate by assuming a frame rate of 30
frames per second:
Expected_packet_size_bits 用于在较低比特率下获得略微较慢的附加增加斜率。 例如,它可以通过假设每秒 30 帧的帧速率从当前比特率计算:
bits_per_frame = A_hat(i-1) / 30
packets_per_frame = ceil(bits_per_frame / (1200 * 8))
avg_packet_size_bits = bits_per_frame / packets_per_frame

Since the system depends on over-using the channel to verify the
current available bandwidth estimate, we must make sure that our
estimate does not diverge from the rate at which the sender is
actually sending. Thus, if the sender is unable to produce a bit
stream with the bitrate the congestion controller is asking for, the
available bandwidth estimate should stay within a given bound.
Therefore we introduce a threshold
由于系统依赖于过度使用信道来验证当前可用带宽估计,我们必须确保我们的估计不会偏离发送方实际发送的速率。
因此,如果发送方无法以拥塞控制器要求的比特率生成比特流,则可用带宽估计应保持在给定范围内。 因此我们引入了一个阈值
A_hat(i) < 1.5 * R_hat(i)

When an over-use is detected the system transitions to the decrease
state, where the delay-based available bandwidth estimate is
decreased to a factor times the currently incoming bitrate.
当检测到过度使用时,系统过渡到减少
状态,其中基于延迟的可用带宽估计是
减少到当前传入比特率的倍数。
A_hat(i) = alpha * R_hat(i)

alpha is typically chosen to be in the interval [0.8, 0.95], 0.85 is
the RECOMMENDED value.
alpha 通常选择在区间 [0.8, 0.95] 中,0.85 是
推荐值。
When the detector signals under-use to the rate control subsystem, we
know that queues in the network path are being emptied, indicating
that our available bandwidth estimate A_hat is lower than the actual
available bandwidth. Upon that signal the rate control subsystem
will enter the hold state, where the receive-side available bandwidth



Holmer, et al. Expires December 31, 2015 [Page 12]


Internet-Draft Congestion Control for RTCWEB June 2015


estimate will be held constant while waiting for the queues to
stabilize at a lower level - a way of keeping the delay as low as
possible. This decrease of delay is wanted, and expected,
immediately after the estimate has been reduced due to over-use, but
can also happen if the cross traffic over some links is reduced.

It is RECOMMENDED that the routine to update A_hat(i) is run at least
once every response_time interval.

当探测器向速率控制子系统发送正在使用的信号时,我们知道网络路径中的队列正在被清空,这表明我们的可用带宽估计 A_hat 低于实际可用带宽。
根据该信号,速率控制子系统将进入保持状态,在等待队列稳定在较低水平的同时,接收端可用带宽估计将保持不变——这是一种保持延迟尽可能低的方法。
在由于过度使用而减少估计值之后立即需要并预期这种延迟减少,但如果某些链路上的交叉流量减少,也会发生这种情况。
建议更新 A_hat(i) 的例程至少在每个 response_time 间隔运行一次。


4.5. Parameters settings

+------------+-------------------------------------+----------------+
| Parameter | Description | RECOMMENDED |
| | | Value |
+------------+-------------------------------------+----------------+
| burst_time | Time limit in milliseconds between | 5 ms |
| | packet bursts which identifies a | |
| | group | |
| Q | State noise covariance matrix | diag(Q(i)) = |
| | | [10^-13 |
| | | 10^-3]^T |
| E(0) | Initial value of the system error | diag(E(0)) = |
| | covariance | [100 0.1]^T |
| chi | Coefficient used for the measured | [0.1, 0.001] |
| | noise variance | |
| gamma_1(0) | Initial value for the adaptive | 12.5 ms |
| | threshold | |
| gamma_2 | Time required to trigger an overuse | 10 ms |
| | signal | |
| K_u | Coefficient for the adaptive | 0.01 |
| | threshold | |
| K_d | Coefficient for the adaptive | 0.00018 |
| | threshold | |
| T | Time window for measuring the | [0.5, 1] s |
| | received bitrate | |
| alpha | Decrease rate factor | 0.85 |
+------------+-------------------------------------+----------------+

Table 1: RECOMMENDED values for delay based controller

Table 1

5. Loss-based control

A second part of the congestion controller bases its decisions on the
round-trip time, packet loss and available bandwidth estimates A_hat
received from the delay-based controller. The available bandwidth




Holmer, et al. Expires December 31, 2015 [Page 13]


Internet-Draft Congestion Control for RTCWEB June 2015


estimates computed by the loss-based controller are denoted with
As_hat.

The available bandwidth estimates A_hat produced by the delay-based
controller are only reliable when the size of the queues along the
path sufficiently large. If the queues are very short, over-use will
only be visible through packet losses, which are not used by the
delay-based controller.

The loss-based controller SHOULD run every time feedback from the
receiver is received.
拥塞控制器的第二部分基于从基于延迟的控制器接收到的往返时间、数据包丢失和可用带宽估计 A_hat 做出决定。
由基于丢包的控制器计算的可用带宽估计用 As_hat 表示。
仅当沿路径的队列大小足够大时,基于延迟的控制器产生的可用带宽估计 A_hat 才是可靠的。
如果队列非常短,过度使用只会通过数据包丢失可见,而基于延迟的控制器不会使用这些数据包。
每次收到来自接收器的反馈时,基于丢包的控制器都应该运行。
o If 2-10% of the packets have been lost since the previous report
from the receiver, the sender available bandwidth estimate
As_hat(i) will be kept unchanged.

o If more than 10% of the packets have been lost a new estimate is
calculated as As_hat(i) = As_hat(i-1)(1-0.5p), where p is the loss
ratio.

o As long as less than 2% of the packets have been lost As_hat(i)
will be increased as As_hat(i) = 1.05(As_hat(i-1))

The new bandwidth estimate is lower-bounded by the TCP Friendly Rate
Control formula [RFC3448] and upper-bounded by the delay-based
estimate of the available bandwidth A_hat(i), where the delay-based
estimate has precedence:
新的带宽估计由 TCP 友好速率控制公式 [RFC3448] 下限,上限由可用带宽 A_hat(i) 的基于延迟的估计确定,其中基于延迟的估计具有优先权:
8 s
As_hat(i) >= ---------------------------------------------------------
R*sqrt(2*b*p/3) + (t_RTO*(3*sqrt(3*b*p/8)*p*(1+32*p^2)))

As_hat(i) <= A_hat(i)


where b is the number of packets acknowledged by a single TCP
acknowledgment (set to 1 per TFRC recommendations), t_RTO is the TCP
retransmission timeout value in seconds (set to 4*R) and s is the
average packet size in bytes. R is the round-trip time in seconds.
其中 b 是单个 TCP 确认的数据包数
确认(根据 TFRC 建议设置为 1),t_RTOTCP
以秒为单位的重传超时值(设置为 4*R),s 是
平均数据包大小(以字节为单位)。 R 是以秒为单位的往返时间。
(The multiplication by 8 comes because TFRC is computing bandwidth in
bytes, while this document computes bandwidth in bits.)
(乘以 8 是因为 TFRC 在计算带宽
字节,而本文档以位为单位计算带宽。)
In words: The loss-based estimate will never be larger than the
delay-based estimate, and will never be lower than the estimate from
the TFRC formula except if the delay-based estimate is lower than the
TFRC estimate.

换句话说:基于丢包的估计永远不会大于
基于延迟的估计,并且永远不会低于来自
TFRC 公式,除非基于延迟的估计低于
TFRC 估计。


Holmer, et al. Expires December 31, 2015 [Page 14]


Internet-Draft Congestion Control for RTCWEB June 2015


We motivate the packet loss thresholds by noting that if the
transmission channel has a small amount of packet loss due to over-
use, that amount will soon increase if the sender does not adjust his
bitrate. Therefore we will soon enough reach above the 10% threshold
and adjust As_hat(i). However, if the packet loss ratio does not
increase, the losses are probably not related to self-inflicted
congestion and therefore we should not react on them.
我们通过注意到如果传输通道由于过度使用而有少量数据包丢失来激发丢包阈值,如果发送方不调整他的比特率,该数量将很快增加。
因此,我们将很快达到 10% 以上的阈值并调整 As_hat(i)。 但是,如果丢包率没有增加,则丢包可能与自己造成的拥塞无关,因此我们不应对其做出反应。




6. Interoperability Considerations互操作性注意事项

In case a sender implementing these algorithms talks to a receiver
which do not implement any of the proposed RTCP messages and RTP
header extensions, it is suggested that the sender monitors RTCP
receiver reports and uses the fraction of lost packets and the round-
trip time as input to the loss-based controller. The delay-based
controller should be left disabled.
如果实施这些算法的发送方与未实施任何提议的 RTCP 消息和 RTP 标头扩展的接收方对话,建议发送方监视 RTCP 接收方报告并使用丢失数据包的比例和往返时间作为 输入到基于损失的控制器。
基于延迟的控制器应保持禁用状态。



7. Implementation Experience

This algorithm has been implemented in the open-source WebRTC
project, has been in use in Chrome since M23, and is being used by
Google Hangouts.
该算法已在开源WebRTC中实现
项目,自 M23 以来一直在 Chrome 中使用,并且正在被使用
谷歌环聊。
Deployment of the algorithm have revealed problems related to, e.g,
congested or otherwise problematic WiFi networks, which have led to
algorithm improvements. The algorithm has also been tested in a
multi-party conference scenario with a conference server which
terminates the congestion control between endpoints. This ensures
that no assumptions are being made by the congestion control about
maximum send and receive bitrates, etc., which typically is out of
control for a conference server.
该算法的部署揭示了与拥塞或其他有问题的 WiFi 网络相关的问题,这导致了算法的改进。 该算法还在多方会议场景中进行了测试,会议服务器终止了端点之间的拥塞控制。
这确保了拥塞控制不会做出关于最大发送和接收比特率等的假设,这对于会议服务器来说通常是无法控制的。


8. Further Work

This draft is offered as input to the congestion control discussion.

Work that can be done on this basis includes:

o Considerations of integrated loss control: How loss and delay
control can be better integrated, and the loss control improved.

o Considerations of locus of control: evaluate the performance of
having all congestion control logic at the sender, compared to
splitting logic between sender and receiver.

o Considerations of utilizing ECN as a signal for congestion
estimation and link over-use detection.
该草案是作为拥塞控制讨论的输入提供的。

在此基础上可以完成的工作包括:

o 集成损耗控制的考虑:如何更好地集成损耗和延迟控制,以及改进损耗控制。

o 控制点的考虑:与发送方和接收方之间的拆分逻辑相比,评估在发送方拥有所有拥塞控制逻辑的性能。

o 考虑使用 ECN 作为拥塞估计和链路过度使用检测的信号。



Holmer, et al. Expires December 31, 2015 [Page 15]


Internet-Draft Congestion Control for RTCWEB June 2015


9. IANA Considerations

This document makes no request of IANA.

Note to RFC Editor: this section may be removed on publication as an
RFC.

10. Security Considerations

An attacker with the ability to insert or remove messages on the
connection would have the ability to disrupt rate control. This
could make the algorithm to produce either a sending rate under-
utilizing the bottleneck link capacity, or a too high sending rate
causing network congestion.

In this case, the control information is carried inside RTP, and can
be protected against modification or message insertion using SRTP,
just as for the media. Given that timestamps are carried in the RTP
header, which is not encrypted, this is not protected against
disclosure, but it seems hard to mount an attack based on timing
information only.

11. Acknowledgements

Thanks to Randell Jesup, Magnus Westerlund, Varun Singh, Tim Panton,
Soo-Hyun Choo, Jim Gettys, Ingemar Johansson, Michael Welzl and
others for providing valuable feedback on earlier versions of this
draft.

12. References

12.1. Normative References

[I-D.alvestrand-rmcat-remb]
Alvestrand, H., "RTCP message for Receiver Estimated
Maximum Bitrate", draft-alvestrand-rmcat-remb-03 (work in
progress), October 2013.

[I-D.holmer-rmcat-transport-wide-cc-extensions]
Holmer, S., Flodman, M., and E. Sprang, "RTP Extensions
for Transport-wide Congestion Control", draft-holmer-
rmcat-transport-wide-cc-extensions-00 (work in progress),
March 2015.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.





Holmer, et al. Expires December 31, 2015 [Page 16]


Internet-Draft Congestion Control for RTCWEB June 2015


[RFC3448] Handley, M., Floyd, S., Padhye, J., and J. Widmer, "TCP
Friendly Rate Control (TFRC): Protocol Specification", RFC
3448, January 2003.

[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, RFC 3550, July 2003.

[abs-send-time]
"RTP Header Extension for Absolute Sender Time",
<http://www.webrtc.org/experiments/rtp-hdrext/
abs-send-time>.

12.2. Informative References

[Pv13] De Cicco, L., Carlucci, G., and S. Mascolo, "Understanding
the Dynamic Behaviour of the Google Congestion Control",
Packet Video Workshop , December 2013.

[RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC
2914, September 2000.

Appendix A. Change log

A.1. Version -00 to -01

o Added change log

o Added appendix outlining new extensions

o Added a section on when to send feedback to the end of section 3.3
"Rate control", and defined min/max FB intervals.

o Added size of over-bandwidth estimate usage to "further work"
section.

o Added startup considerations to "further work" section.

o Added sender-delay considerations to "further work" section.

o Filled in acknowledgments section from mailing list discussion.

A.2. Version -01 to -02

o Defined the term "frame", incorporating the transmission time
offset into its definition, and removed references to "video
frame".




Holmer, et al. Expires December 31, 2015 [Page 17]


Internet-Draft Congestion Control for RTCWEB June 2015


o Referred to "m(i)" from the text to make the derivation clearer.

o Made it clearer that we modify our estimates of available
bandwidth, and not the true available bandwidth.

o Removed the appendixes outlining new extensions, added pointers to
REMB draft and RFC 5450.

A.3. Version -02 to -03

o Added a section on how to process multiple streams in a single
estimator using RTP timestamps to NTP time conversion.

o Stated in introduction that the draft is aimed at the RMCAT
working group.

A.4. rtcweb-03 to rmcat-00

Renamed draft to link the draft name to the RMCAT WG.

A.5. rmcat -00 to -01

Spellcheck. Otherwise no changes, this is a "keepalive" release.

A.6. rmcat -01 to -02

o Added Luca De Cicco and Saverio Mascolo as authors.

o Extended the "Over-use detector" section with new technical
details on how to dynamically tune the offset gamma_1 for improved
fairness properties.

o Added reference to a paper analyzing the behavior of the proposed
algorithm.

A.7. rmcat -02 to -03

o Swapped receiver-side/sender-side controller with delay-based/
loss-based controller as there is no longer a requirement to run
the delay-based controller on the receiver-side.

o Removed the discussion about multiple streams and transmission
time offsets.

o Introduced a new section about "Feedback and extensions".

o Improvements to the threshold adaptation in the "Over-use
detector" section.



Holmer, et al. Expires December 31, 2015 [Page 18]


Internet-Draft Congestion Control for RTCWEB June 2015


o Swapped the previous MIMD rate control algorithm for a new AIMD
rate control algorithm.

Authors' Addresses

Stefan Holmer
Google
Kungsbron 2
Stockholm 11122
Sweden

Email: holmer@google.com


Henrik Lundin
Google
Kungsbron 2
Stockholm 11122
Sweden


Gaetano Carlucci
Politecnico di Bari
Via Orabona, 4
Bari 70125
Italy

Email: gaetano.carlucci@poliba.it


Luca De Cicco
Politecnico di Bari
Via Orabona, 4
Bari 70125
Italy

Email: l.decicco@poliba.it


Saverio Mascolo
Politecnico di Bari
Via Orabona, 4
Bari 70125
Italy

Email: mascolo@poliba.it